• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
    • Tech Futures
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 7 (November 2025)
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

Machines as teammates: A research agenda on AI in team collaboration

August 23, 2021

🔬 Research summary by Connor Wright, our Partnerships Manager.

[Original paper by Isabella Seebera , Eva Bittnerb , Robert O. Briggsc , Triparna de Vreeded , Gert-Jan de Vreeded, *, Aaron Elkinsc , Ronald Maiera , Alexander B. Merza , Sarah Oeste-Reiße , Nils Randrupf , Gerhard Schwabeg , Matthias Söllner]


Overview: The importance of collaboration in the AI space is not only between humans but also between humanity and AI. Imagining working with an AI teammate may no longer be imaginary in the future, and understanding how this will affect collaboration will be essential. For, understanding this will highlight the importance of the human cog to the human-AI machine.


Introduction

Have you ever imagined consulting an AI co-worker? What would you like them to be like? The implications of AI as a teammate are considered within this piece, stretching from how they look to how they could upset human team dynamics. While we must consider the benefits of this collaboration, the human element to the process must remain, especially in terms of human development itself.

Key Insights

A different kind of teammate

Whether the AI is in a physical robot or an algorithm, it cannot be compared to a regular human teammate. One key difference is its ability to assess millions of different alternatives and situations at a time, proving impossible for humans. While useful, the form in which the communication of this assessment arrives would need to be determined. It could be in speech or text, with or without facial expressions for visual feedback. Questions like these lead us to question what we prefer in an AI teammate over a human.

What do we want in an AI team member?

The paper holds the classic Alan Turing definition that “AI refers to the capability of a machine or computer to imitate intelligent human behaviour or thought”. In this sense, should our thinking about AI collaborators be centred in human terms? Like with chatbots, similar considerations are brought into play, such as whether the AI should have a gender, can it differentiate between serious and social chatter etc. Our decisions on these questions will then certainly affect how the team dynamic plays out.

The effect on collaboration

In this regard, it’s essential to differentiate between AI as a teammate and AI as an assistant. Collaboration with AI as a tool is not as thought-provoking as holding it in the ‘higher’ regard as a counterpart. 

In this way, collaborating with such an entity could enhance or negatively impact the team dynamic. The AI could become a leader in the group on specific issues it can handle best, yet depending too much on the machine could lose human competencies. Furthermore, the AI teammate could prove excellent at drawing insights from data, but the lack of out-the-box thinking could reinforce already present views. Hence, while collaboration is undoubtedly affected by introducing AI, the right balance still needs to be struck to make the most of it.

Considerations when collaborating

Given the novelty of this practice and AI in general, why an AI would suggest a particular course of action becomes a critical question. In addition, the extent to which we recognise the AI’s involvement can also have far-reaching impacts. Should the AI become a leader on a topic, should it be credited with its work? Much of this stems from whether AI can be creative or not, which can be found on poetry, fashion and music.

Between the lines

While collaboration with AI teammates may be essential practice in the future, I would be cautious against throwing such collaboration into every problem possible. Sure, using AI’s analytical capabilities will nearly always be helpful, but that pertains more to AI as an assistant rather than a counterpart. Hence, problems such as trying to solve world hunger, I believe, would not benefit from an AI as a teammate intervention, mainly due to how AI can never actually feel or understand what being hungry feels like. What’s for sure is that while AI collaboration can reap benefits, human involvement remains paramount.

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

Illustration of a coral reef ecosystem

Tech Futures: Diversity of Thought and Experience: The UN’s Scientific Panel on AI

This image shows a large white, traditional, old building. The top half of the building represents the humanities (which is symbolised by the embedded text from classic literature which is faintly shown ontop the building). The bottom section of the building is embossed with mathematical formulas to represent the sciences. The middle layer of the image is heavily pixelated. On the steps at the front of the building there is a group of scholars, wearing formal suits and tie attire, who are standing around at the enternace talking and some of them are sitting on the steps. There are two stone, statute-like hands that are stretching the building apart from the left side. In the forefront of the image, there are 8 students - which can only be seen from the back. Their graduation gowns have bright blue hoods and they all look as though they are walking towards the old building which is in the background at a distance. There are a mix of students in the foreground.

Tech Futures: Co-opting Research and Education

Agentic AI systems and algorithmic accountability: a new era of e-commerce

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

related posts

  • Beyond the Frontier: Fairness Without Accuracy Loss

    Beyond the Frontier: Fairness Without Accuracy Loss

  • Regulatory Instruments for Fair Personalized Pricing

    Regulatory Instruments for Fair Personalized Pricing

  • AI Certification: Advancing Ethical Practice by Reducing Information Asymmetries

    AI Certification: Advancing Ethical Practice by Reducing Information Asymmetries

  • Jack Clark Presenting the 2022 AI Index Report

    Jack Clark Presenting the 2022 AI Index Report

  • The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practic...

    The Ethics of AI Value Chains: An Approach for Integrating and Expanding AI Ethics Research, Practic...

  • Exploring the under-explored areas in teaching tech ethics today

    Exploring the under-explored areas in teaching tech ethics today

  • Labor and Fraud on the Google Play Store: The Case of Install-Incentivizing Apps

    Labor and Fraud on the Google Play Store: The Case of Install-Incentivizing Apps

  • The Ethics of Sustainability for Artificial Intelligence

    The Ethics of Sustainability for Artificial Intelligence

  • Private Training Set Inspection in MLaaS

    Private Training Set Inspection in MLaaS

  • Research summary:  Algorithmic Bias: On the Implicit Biases of Social Technology

    Research summary: Algorithmic Bias: On the Implicit Biases of Social Technology

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.