• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • JEDI (Justice, Equity, Diversity, Inclusion
      • Ethics
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

Articles

People are not coins: Morally distinct types of predictions necessitate different fairness constraints

September 15, 2023

🔬 Research Summary by Corinna Hertweck, a fourth-year PhD student at the University of Zurich and the Zurich University of Applied Sciences where she is working on algorithmic fairness. [Original paper by … [Read more...] about People are not coins: Morally distinct types of predictions necessitate different fairness constraints

From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models

September 15, 2023

🔬 Research Summary by Shangbin Feng, Chan Young Park, and Yulia Tsvetkov. Shangbin Feng is a Ph.D. student at University of Washington.Chan Young Park is a Ph.D. student at Carnegie Mellon University, studying … [Read more...] about From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models

Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

September 15, 2023

🔬 Research Summary by Stephen Casper, an MIT PhD student working on AI interpretability, diagnostics, and safety. [Original paper by Stephen Casper,* Xander Davies,* Claudia Shi, Thomas Krendl Gilbert, Jérémy … [Read more...] about Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback

A Critical Analysis of the What3Words Geocoding Algorithm

September 15, 2023

🔬 Research Summary by Rudy Arthur, a Senior Lecturer in Data Science at the University of Exeter. [Original paper by Rudy Arthur] Overview: What3Words (W3W) is a geocoding app that has been aggressively … [Read more...] about A Critical Analysis of the What3Words Geocoding Algorithm

Confidence-Building Measures for Artificial Intelligence

September 10, 2023

🔬 Research Summary by Andrew W. Reddie, Sarah Shoker, and Leah Walker. Andrew W. Reddie is an Associate Research Professor at the University of California, Berkeley’s Goldman School of Public Policy, and Founder … [Read more...] about Confidence-Building Measures for Artificial Intelligence

« Previous Page
Next Page »

Primary Sidebar

🔍 SEARCH

Spotlight

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer

Categories


• Blog
• Research Summaries
• Columns
• Core Principles of Responsible AI
• Special Topics

Signature Content


• The State Of AI Ethics

• The Living Dictionary

• The AI Ethics Brief

Learn More


• About

• Open Access Policy

• Contributions Policy

• Editorial Stance on AI Tools

• Press

• Donate

• Contact

The AI Ethics Brief (bi-weekly newsletter)

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.


Archive

  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.