• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Core Principles of Responsible AI
    • Accountability
    • Fairness
    • Privacy
    • Safety and Security
    • Sustainability
    • Transparency
  • Special Topics
    • AI in Industry
    • Ethical Implications
    • Human-Centered Design
    • Regulatory Landscape
    • Technical Methods
  • Living Dictionary
  • State of AI Ethics
  • AI Ethics Brief
  • šŸ‡«šŸ‡·
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

Research Summary: Towards Evaluating the Robustness of Neural Networks

June 29, 2020

Summary contributed byĀ Sundar Narayanan, Director at Nexdigm. Ethics and compliance professional with experience in fraud investigation, forensic accounting, anti-corruption reviews, ethics advisory and litigation support experience.

*Author & link to original paper at the bottom.


Defensive distillation is a defense proposed for hardening neural networks against adversarial examples whereby it defeats existing attack algorithms and reduces their success probability from 95% to 0.5%.

The paper is set on the broad premise of robustness of neural network to avert an adversarial attack. It lays out the two clear factors (a) Construct proofs of lower bound for robustness and (b) Demonstrate attacks for upper bound on robustness. The paper attempts to move towards the second while explaining the gaps in first (essentially the weakness of distilled networks).

The distilled network works in 4 steps, namely (1) Teach the teacher network with standard set, (2) Create a Soft label on the training set using the teacher network, (3) Train the distilled network on soft labels and (4) Test the distilled network

Defensive distillation is robust for current level of attacks, it fails against stronger attacks. The existing distilled network fails as the optimization gradients are almost always zero, resulting in both L-BFGS and FGSM (Fast Gradient Sign Method) failing to make progress and terminate.

On the other hand, the authors attempt 3 types of attacks based on the distance metrics namely L0, L2 and Lāˆž. They find the results to be effective in the distilled network environment. The authors apply the distance metrics using three solvers gradient descent, gradient descent with momentum and ADAM

While the L0 distance metric is non-differentiable, L2 appears to be effective. L2 attempts to identify unimportant pixels in the image in each iteration resulting in inherently bringing focus to important pixels, perturbation of which will impact the classification. This also eliminates some pixels that don’t have much effect on the classifier output. Lāˆž replace the L2 term in the objective function with a penalty for any terms that exceed Ļ„ (initially 1, decreasing in each iteration). This prevents oscillation resulting in effective results.

These approach helps in establishing robustness and developing high-confidence adversarial examples. High-confidence adversarial examples are the ones where an adversarial example gets strongly misclassified by the original model, instead of barely changing the classification. This could be any type of misclassification (General misclassification, Targeted misclassification or source/ target misclassification). The paper also reflects that high confidence adversarial attack limits/ breaks the transferability of the adversarial attack to different models.

The following are the key takeaways the paper explores as a defense to the adversarial attack and as a step forward from distillated network approach

  • Defenders should make sure to establish robustness against the L2 distance metric
  • Demonstrate that transferability fails by constructing high-confidence adversarial examples

Original paper by Nicholas Carlini, David Wagner: https://arxiv.org/abs/1608.04644Ā 

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

šŸ” SEARCH

Spotlight

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

AI Policy Corner: U.S. Copyright Guidance on Works Created with AI

related posts

  • Intersectional Inquiry, on the Ground and in the Algorithm

    Intersectional Inquiry, on the Ground and in the Algorithm

  • Study of Competition Issues in Data-Driven Markets in Canada

    Study of Competition Issues in Data-Driven Markets in Canada

  • AI agents for facilitating social interactions and wellbeing

    AI agents for facilitating social interactions and wellbeing

  • Tell me, what are you most afraid of? Exploring the Effects of Agent Representation on Information D...

    Tell me, what are you most afraid of? Exploring the Effects of Agent Representation on Information D...

  • Towards a Feminist Metaethics of AI

    Towards a Feminist Metaethics of AI

  • Are Large Language Models a Threat to Digital Public Goods? Evidence from Activity on Stack Overflow

    Are Large Language Models a Threat to Digital Public Goods? Evidence from Activity on Stack Overflow

  • Humans, AI, and Context: Understanding End-Users’ Trust in a Real-World Computer Vision Application

    Humans, AI, and Context: Understanding End-Users’ Trust in a Real-World Computer Vision Application

  • Fairness Uncertainty Quantification: How certain are you that the model is fair?

    Fairness Uncertainty Quantification: How certain are you that the model is fair?

  • Ethics of AI in Education: Towards a Community-wide Framework

    Ethics of AI in Education: Towards a Community-wide Framework

  • Ethics for People Who Work in Tech

    Ethics for People Who Work in Tech

Partners

  • Ā 
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer

Categories


• Blog
• Research Summaries
• Columns
• Core Principles of Responsible AI
• Special Topics

Signature Content


• The State Of AI Ethics

• The Living Dictionary

• The AI Ethics Brief

Learn More


• About

• Open Access Policy

• Contributions Policy

• Editorial Stance on AI Tools

• Press

• Donate

• Contact

The AI Ethics Brief (bi-weekly newsletter)

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.


Archive

  • Ā© 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.