• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 7 (November 2025)
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

Participatory Design to build better contact- and proximity-tracing apps

June 4, 2020

Full paper in PDF formDownload

Below is the abstract from the full paper, authored by Abhishek Gupta and Tania De Gasperis. (equal contributions from each author)

Abstract

With the push for contact- and proximity-tracing solutions as a means to manage the spread of the pandemic, there is a distrust between the citizens and authorities that are deploying these solutions. The efficacy of the solutions relies on meeting a minimum uptake threshold which is hitting a barrier because of a lack of trust and transparency in how these solutions are being developed.

We propose participatory design as a mechanism to evoke trust and explore how it might be applied to co-create technological solutions that not only meet the needs of the users better but also expand their reach to underserved and high-risk communities. We also highlight the role of the bazaar model of development and complement that with quantitative and qualitative metrics for evaluating the solutions and convincing policymakers and other stakeholders in the value of this approach with empirical evidence.

Keywords: participatory design, contact tracing, proximity tracing, trust, transparency

Full paper in PDF formDownload
Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

馃攳 SEARCH

Spotlight

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

related posts

  • Brave: what it means to be an AI Ethicist

    Brave: what it means to be an AI Ethicist

  • Research summary: A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous Algorithmic ...

    Research summary: A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous Algorithmic ...

  • A Taxonomy of Foundation Model based Systems for Responsible-AI-by-Design

    A Taxonomy of Foundation Model based Systems for Responsible-AI-by-Design

  • Probing Networked Agency: Where is the Locus of Moral Responsibility?

    Probing Networked Agency: Where is the Locus of Moral Responsibility?

  • Knowing Your Annotator: Rapidly Testing the Reliability of Affect Annotation

    Knowing Your Annotator: Rapidly Testing the Reliability of Affect Annotation

  • Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information De...

    Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information De...

  • 10 takeaways from our meetup on AI Ethics in the APAC Region

    10 takeaways from our meetup on AI Ethics in the APAC Region

  • It鈥檚 COMPASlicated: The Messy Relationship between RAI Datasets and Algorithmic Fairness Benchmarks

    It鈥檚 COMPASlicated: The Messy Relationship between RAI Datasets and Algorithmic Fairness Benchmarks

  • Conceptualizing the Relationship between AI Explanations and User Agency

    Conceptualizing the Relationship between AI Explanations and User Agency

  • Why civic competence in AI ethics is needed in 2021

    Why civic competence in AI ethics is needed in 2021

Partners

  • 聽
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • 漏 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.