• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Core Principles of Responsible AI
    • Accountability
    • Fairness
    • Privacy
    • Safety and Security
    • Sustainability
    • Transparency
  • Special Topics
    • AI in Industry
    • Ethical Implications
    • Human-Centered Design
    • Regulatory Landscape
    • Technical Methods
  • Living Dictionary
  • State of AI Ethics
  • AI Ethics Brief
  • 🇫🇷
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

Do Less Teaching, Do More Coaching: Toward Critical Thinking for Ethical Applications of Artificial Intelligence

June 17, 2022

🔬 Research summary by Connor Wright, our Partnerships Manager.

[Original paper by Claire Su-Yeon Park, Haejoong Kim, Sangmin Lee]


Overview: With new online educational platforms, a trend in pedagogy is to coach rather than teach. Without developing a critically evaluative attitude, we risk falling into blind and unwarranted faith in AI systems. For sectors such as healthcare, this could prove fatal. 


Introduction

With the proliferation of online education opportunities, a new tendency in higher education is to focus more on coaching rather than teaching when it comes to AI. Allowing students to be able to evaluate information rather than simply being spoon-fed exam material critically will prove essential to guiding an appropriate AI future. This will prove pertinent to the healthcare field, where we ought to treat technology as a tool rather than a replacement. To best explore this, I’ll first touch upon the new trend emerging in pedagogy before exploring the dangers of uncritical uniformity, later applying it to healthcare. To end, I’ll comment on how the better our skills are, the better this will be reflected in AI systems themselves.

Key Insights

A new trend in pedagogy

Given the rise of new online education opportunities after the pandemic, higher education appears to be in a transition phase. Higher education is becoming more proactive rather than reactive, especially regarding AI. The shift swings away from simply disseminating knowledge to guiding students’ critical thinking journey.

Recommender algorithms already allow students to personalise the content they view and discover new information. Hence, we are seeing a stronger trend in independent learning in addition to any course material, placing students in a more active role than before the pandemic. Said transition thus points towards equipping students with the tools to evaluate information and not just being able to reproduce it on an exam paper.

Uncritical uniformity

Without being critical, the users of recommender algorithms could fall into reproducing the interests of the developers. If they are not careful, the subtle shifts towards the “specific bias” (p.98) a system could contain will go undetected—for example, engaging in newspaper websites that recommend news items associated with their political leanings. Here, if we don’t question, we could fall party to isolating ourselves in our own views.

Building on this, being uncritical leads to unwarranted blind faith in AI systems. Computers cannot think critically for us, but they can reflect our biases. For example. The Korean Scatter Lab-designed chatbot Lee Luda reproduced homophobic and transphobic comments when asked specific questions (Figure 1). Adopting an uncritical attitude to this technology would’ve proved detrimental and allowed this technology to continue to operate without punishment. Nevertheless, the company was castigated with a KRW 13.3 million fine.

Virtual education and healthcare

Involved within these considerations is how, without a critical attitude, it may become difficult to tell the difference between what a student believes and what the online learning system wants them to think. Being constantly fed particular articles eventually becomes difficult to label as reflective of the user or the system itself. Without critically evaluating such information, we become paralysed in our efforts to discern and assert what they believe in.

This proves poignant within the healthcare system. Without developing a critically evaluative outlook, we risk not being able to intervene in AI-driven decisions that could lead to the endangerment of patient welfare. For example, for those who arrive at a hospital with flank pain, the STONE algorithm uses its “origin/race” factor to predict the likelihood of kidney stones in patients. It subsequently adds three points (out of 13) to non-white patients, which could lead to non-white patients not being referred to a specialist even when they need treatment. Hence, while this technology is beneficial, it should be treated as a tool that augments rather than replaces human intelligence.

Between the lines

AI is omnipresent within our lives, from YouTube recommender algorithms to allow us to unlock our phones through facial recognition. Consequently, equipping the standard citizen and students with the dexterity to evaluate AI systems is a must. The better our skills, the more these will be reflected in the AI, its outcomes and how we deal with any negative consequences that arise.

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

AI Policy Corner: Frontier AI Safety Commitments, AI Seoul Summit 2024

AI Policy Corner: The Colorado State Deepfakes Act

Special Edition: Honouring the Legacy of Abhishek Gupta (1992–2024)

AI Policy Corner: The Turkish Artificial Intelligence Law Proposal

From Funding Crisis to AI Misuse: Critical Digital Rights Challenges from RightsCon 2025

related posts

  • The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks (Research Summa...

    The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks (Research Summa...

  • Predatory Medicine: Exploring and Measuring the Vulnerability of Medical AI to Predatory Science

    Predatory Medicine: Exploring and Measuring the Vulnerability of Medical AI to Predatory Science

  • Adding Structure to AI Harm

    Adding Structure to AI Harm

  • Investing in AI for Social Good: An Analysis of European National Strategies

    Investing in AI for Social Good: An Analysis of European National Strategies

  • Distributed Governance: a Principal-Agent Approach to Data Governance - Part 1 Background & Core Def...

    Distributed Governance: a Principal-Agent Approach to Data Governance - Part 1 Background & Core Def...

  • The philosophical basis of algorithmic recourse

    The philosophical basis of algorithmic recourse

  • Balancing Data Utility and Confidentiality in the 2020 US Census

    Balancing Data Utility and Confidentiality in the 2020 US Census

  • Research summary: Social Biases in NLP Models as Barriers for Persons with Disabilities

    Research summary: Social Biases in NLP Models as Barriers for Persons with Disabilities

  • Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust

    Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust

  • Broadening the Algorithm Auditing Lens to Investigate Targeted Advertising

    Broadening the Algorithm Auditing Lens to Investigate Targeted Advertising

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer

Categories


• Blog
• Research Summaries
• Columns
• Core Principles of Responsible AI
• Special Topics

Signature Content


• The State Of AI Ethics

• The Living Dictionary

• The AI Ethics Brief

Learn More


• About

• Open Access Policy

• Contributions Policy

• Editorial Stance on AI Tools

• Press

• Donate

• Contact

The AI Ethics Brief (bi-weekly newsletter)

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.


Archive

  • © MONTREAL AI ETHICS INSTITUTE. All rights reserved 2024.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.