• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 7 (November 2025)
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks (Research Summary)

November 30, 2020

Summary contributed by our researcher Erick Galinkin (@ErickGalinkin), who’s also Principal AI Researcher at Rapid7.

*Link to original paper + authors at the bottom.


Overview: Neural networks have shown amazing ability to learn on a variety of tasks, and this sometimes leads to unintended memorization. This paper explores how generative adversarial networks may be used to recover some of these memorized examples.


Model inversion attacks are a type of attack which abuse access to a model by attempting to infer information about the training data set. Effective model inversion attacks have largely been on extremely simple models such as linear regression and logistic regression, showing little promise in deep neural networks. However, generative adversarial networks (GANs) provide the ability to approximate these data sets.

Using techniques similar to image inpainting for obscured or damaged images, the GAN creates semantically plausible pixels based on what has been inferred about the sensitive features in the training data. A Wasserstein-GAN is used to set up a min-max problem as the loss function, and some auxiliary knowledge about the private images are provided to the attacker. This serves as an additional input to the generator. The generator then passes the recovered images to both the target network and a discriminator. The loss from both of these inferences is combined to optimize the generator. 

Using facial recognition classifiers as a model, Zhang et al. find that generative model inversion is significantly more effective than existing model inversion methods. Notably, more powerful models which have more layers and parameters are more susceptible to the attack.

Zhang et al. also find that pre-training the GAN on auxiliary data from the training distribution helps recovery of private data significantly. However, even training on similar data with a different distribution – such as pre-training on the PubFig83 dataset and attacking a model trained on the CelebA dataset still outperforms existing model inversion attacks by a large margin. Some image pre-processing can further improve the accuracy of the GAN in generating target data.

Finally, Zhang et al. investigated the implications of differential privacy in recovering images. They note that differentially private facial recognition models are very difficult to produce with acceptable accuracy in the first place, due to the complexity of the task. Thus, using MNIST as a reference dataset, they find that generative model inversion can expose private information from differentially private models even with strong privacy guarantees, and the strictness of the guarantee does not impact the ability to recover data. They suggest that this is likely because “DP, in its canonical form, only hides the presence of a single instance in the training set; it does not explicitly aim to protect attribute privacy.”


Original paper by Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Dawn Song: https://arxiv.org/abs/1911.07135

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

This image shows a large white, traditional, old building. The top half of the building represents the humanities (which is symbolised by the embedded text from classic literature which is faintly shown ontop the building). The bottom section of the building is embossed with mathematical formulas to represent the sciences. The middle layer of the image is heavily pixelated. On the steps at the front of the building there is a group of scholars, wearing formal suits and tie attire, who are standing around at the enternace talking and some of them are sitting on the steps. There are two stone, statute-like hands that are stretching the building apart from the left side. In the forefront of the image, there are 8 students - which can only be seen from the back. Their graduation gowns have bright blue hoods and they all look as though they are walking towards the old building which is in the background at a distance. There are a mix of students in the foreground.

Tech Futures: Co-opting Research and Education

Agentic AI systems and algorithmic accountability: a new era of e-commerce

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

related posts

  • Digital transformation and the renewal of social theory: Unpacking the new fraudulent myths and misp...

    Digital transformation and the renewal of social theory: Unpacking the new fraudulent myths and misp...

  • Regulating AI to ensure Fundamental Human Rights: reflections from the Grand Challenge EU AI Act

    Regulating AI to ensure Fundamental Human Rights: reflections from the Grand Challenge EU AI Act

  • On the Construction of Artificial Moral Agents Agents

    On the Construction of Artificial Moral Agents Agents

  • Research summary: Detecting Misinformation on WhatsApp without Breaking Encryption

    Research summary: Detecting Misinformation on WhatsApp without Breaking Encryption

  • Friend or foe? Exploring the implications of large language models on the science system

    Friend or foe? Exploring the implications of large language models on the science system

  • Algorithms as Social-Ecological-Technological Systems: an Environmental Justice lens on Algorithmic ...

    Algorithms as Social-Ecological-Technological Systems: an Environmental Justice lens on Algorithmic ...

  • The Wrong Kind of AI? Artificial Intelligence and the Future of Labour Demand (Research Summary)

    The Wrong Kind of AI? Artificial Intelligence and the Future of Labour Demand (Research Summary)

  • Online public discourse on artificial intelligence and ethics in China: context, content, and implic...

    Online public discourse on artificial intelligence and ethics in China: context, content, and implic...

  • Towards a Feminist Metaethics of AI

    Towards a Feminist Metaethics of AI

  • Brave: what it means to be an AI Ethicist

    Brave: what it means to be an AI Ethicist

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.