• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

Research summary: Warning Signs: The Future of Privacy and Security in the Age of Machine Learning

May 20, 2020

Summary contributed by Victoria Heath (@victoria_heath7), Communications Manager at Creative Commons

Authors of full paper: Sophie Stalla-Bourdillon, Brenda Leong, Patrick Hall, and Andrew Burt (link provided at the bottom)


There are no widely accepted best practices for mitigating security and privacy issues related to machine learning (ML) systems. Existing best practices for traditional software systems are insufficient because they’re largely based on the prevention and management of access to a system’s data and/or software, whereas ML systems have additional vulnerabilities and novel harms that need to be addressed. For example, one harm posed by ML systems is to individuals not included in the model’s training data but who may be negatively impacted by its inferences.

Harms from ML systems can be broadly categorized as informational harms and behavioral harms. Informational harms “relate to the unintended or unanticipated leakage of information.” The “attacks” that constitute informational harms are:

  • Membership inference: Determining whether an individual’s data was utilized to train a model by examining a sample of the model’s output
  • Model inversion: Recreating the data used to train the model by using a sample of its output
  • Model extraction: Recreating the model itself by uses a sample of its output

Behavioral harms “relate to manipulating the behavior of the model itself, impacting the predictions or outcomes of the model.” The attacks that constitute behavioral harms are:

  • Poisoning: Inserting malicious data into a model’s training data to change its behavior once deployed
  • Evasion: Feeding data into a system to intentionally cause misclassification

Without a set of best practices, ML systems may not be widely and/or successfully adopted. Therefore, the authors of this white paper suggest a “layered approach” to mitigate the privacy and security issues facing ML systems. Approaches include noise injection, intermediaries, transparent ML mechanisms, access controls, model monitoring, model documentation, white hat or red team hacking, and open-source software privacy and security resources.

Finally, the authors note, it’s important to encourage “cross-functional communication” between data scientists, engineers, legal teams, business managers, etc. in order to identify and remediate privacy and security issues related to ML systems. This communication should be ongoing, transparent, and thorough.


Original paper by Sophie Stalla-Bourdillon, Brenda Leong, Patrick Hall, and Andrew Burt: https://fpf.org/wp-content/uploads/2019/09/FPF_WarningSigns_Report.pdf

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

related posts

  • Exchanging Lessons Between Algorithmic Fairness and Domain Generalization (Research Summary)

    Exchanging Lessons Between Algorithmic Fairness and Domain Generalization (Research Summary)

  • LLM Platform Security: Applying a Systematic Evaluation Framework to OpenAI's ChatGPT Plugins

    LLM Platform Security: Applying a Systematic Evaluation Framework to OpenAI's ChatGPT Plugins

  • Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust

    Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust

  • Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutio...

    Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutio...

  • A Generalist Agent

    A Generalist Agent

  • On the Creativity of Large Language Models

    On the Creativity of Large Language Models

  • How Tech Companies are Helping Big Oil Profit from Climate Destruction

    How Tech Companies are Helping Big Oil Profit from Climate Destruction

  • Making Kin with the Machines

    Making Kin with the Machines

  • Perspectives and Approaches in AI Ethics: East Asia (Research Summary)

    Perspectives and Approaches in AI Ethics: East Asia (Research Summary)

  • How Machine Learning Can Enhance Remote Patient Monitoring

    How Machine Learning Can Enhance Remote Patient Monitoring

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.