• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 7 (November 2025)
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

Language (Technology) is Power: A Critical Survey of “Bias” in NLP (Research summary)

September 28, 2020

Summary contributed by Falaah Arif Khan, our Artist in Residence. She creates art exploring tech, including comics related to AI.

Link to original paper + authors at the bottom.


Mini-summary: With the recent boom in scholarship on Fairness and Bias in Machine Learning, several competing notions of bias and different approaches to mitigate their impact have emerged. This incisive meta-review from Blodgett et al dissects 146 papers on Bias in Natural Language Processing (NLP) and identifies critical discrepancies in motivation, normative reasoning and suggested approaches. Key findings from this study include mismatched motivations and interventions, a lack of engagement with relevant literature outside of NLP and overlooking the underlying power dynamics that inform language.

Full summary:

The authors ground their analysis in the recognition that social hierarchies and power dynamics deeply influence language. With this in mind, they make the following recommendations for future scholarship on Bias in NLP- They implore researchers to engage with relevant literature outside of the technical NLP community, in order to better motivate a deeper, richer formalization of “bias”- it’s sources, why it is harmful, in what ways and to whom. They also underline the importance of engaging with communities who are most affected by NLP systems and to take into account their lived experiences.

Their critical survey on recent scholarship demonstrates that perspectives that reconcile language and social dynamics are currently lacking. They find that most papers contain poorly motivated studies that leave unstated what algorithmic discrimination even entails or how it contributes to social injustice. This is further exacerbated by papers that omit normative reasoning and instead focus entirely on system performance. When motivations are enumerated in papers, they often remain brief and overlook an exposition on what type of model behaviors are deemed as harmful or ‘biased’, in what ways do these behaviors cause harm and to whom do they inflict harm. In the absence of a strong, well-articulated motivation for studying bias in NLP, papers on the same task end up operating with different notions of “bias” and hence take different approaches to mitigating this “bias”.

With opposing notions of “bias”, scholars tend to treat “bias” that is inherently representational (the model represents certain social groups less favorably than others) as allocational (discriminatory allocation of resources to different groups) and so authors tend to incorrectly treat representational norms as problematic only due to the fact that they can affect downstream applications that result in allocations.
In terms of shortcomings of techniques used to study “bias” in NLP, the paper identifies a lack of engagement with relevant literature outside of NLP, a mismatch between motivation and technique, and a narrow focus on the sources of bias.

With these limitations of existing scholarship in mind, the authors propose a fundamental reorientation of scholarship on analysing ‘bias’ in NLP towards the question: How are social hierarchies, language ideologies and NLP systems co-produced? Language is a tool for wielding power and language technologies play a critical role in maintaining power dynamics and enforcing social hierarchies. These dynamics influence every stage of the technological lifecycle and hence scholarship focused only on algorithmic interventions will prove to be inadequate.

The authors also validate their recommendations using a case study on African-American English (AAE). They explain how models such as toxicity detectors that perform extremely poorly on AAE perpetuate social stigmatization of AAE speakers. The case study drives home the authors’ point that analysis of ‘bias’ in such a context cannot be limited to merely algorithmic analyses, without taking into account the underlying systemic and structural inequalities.

The authors conclude with an open call to the scientific community, reiterating the need to unite scholarship on language with scholarship on social and power hierarchies.


Original paper by Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach: https://www.aclweb.org/anthology/2020.acl-main.485.pdf

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

This image shows a large white, traditional, old building. The top half of the building represents the humanities (which is symbolised by the embedded text from classic literature which is faintly shown ontop the building). The bottom section of the building is embossed with mathematical formulas to represent the sciences. The middle layer of the image is heavily pixelated. On the steps at the front of the building there is a group of scholars, wearing formal suits and tie attire, who are standing around at the enternace talking and some of them are sitting on the steps. There are two stone, statute-like hands that are stretching the building apart from the left side. In the forefront of the image, there are 8 students - which can only be seen from the back. Their graduation gowns have bright blue hoods and they all look as though they are walking towards the old building which is in the background at a distance. There are a mix of students in the foreground.

Tech Futures: Co-opting Research and Education

Agentic AI systems and algorithmic accountability: a new era of e-commerce

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

related posts

  • Conceptualizing the Relationship between AI Explanations and User Agency

    Conceptualizing the Relationship between AI Explanations and User Agency

  • Research summary: Sponge Examples: Energy-Latency Attacks on Neural Networks

    Research summary: Sponge Examples: Energy-Latency Attacks on Neural Networks

  • Technological trajectories as an outcome of the structure-agency interplay at the national level: In...

    Technological trajectories as an outcome of the structure-agency interplay at the national level: In...

  • Reports on Communication Surveillance in Botswana, Malawi and the DRC, and the Chinese Digital Infra...

    Reports on Communication Surveillance in Botswana, Malawi and the DRC, and the Chinese Digital Infra...

  • Democracy, epistemic agency, and AI: Political Epistemology in Times of Artificial Intelligence

    Democracy, epistemic agency, and AI: Political Epistemology in Times of Artificial Intelligence

  • Compute Trends Across Three Eras of Machine Learning

    Compute Trends Across Three Eras of Machine Learning

  • South Korea as a Fourth Industrial Revolution Middle Power?

    South Korea as a Fourth Industrial Revolution Middle Power?

  • Summoning a New Artificial Intelligence Patent Model: In the Age of Pandemic

    Summoning a New Artificial Intelligence Patent Model: In the Age of Pandemic

  • The Ethical AI Startup Ecosystem 04: Targeted AI Solutions and Technologies

    The Ethical AI Startup Ecosystem 04: Targeted AI Solutions and Technologies

  • AI and Marketing: Why We Need to Ask Ethical Questions

    AI and Marketing: Why We Need to Ask Ethical Questions

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.