• Skip to primary navigation
  • Skip to main content
  • LinkedIn
  • RSS
  • Twitter
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy.

  • Content
    • The State of AI Ethics
    • The AI Ethics Brief
    • The Living Dictionary
    • Research Summaries
    • Columns
      • Social Context in LLM Research: the BigScience Approach
      • Recess
      • Like Talking to a Person
      • Sociology of AI Ethics
      • The New Heartbeat of Healthcare
      • Office Hours
      • Permission to Be Uncertain
      • AI Application Spotlight
      • Ethical AI Startups
    • Publications
  • Community
    • Events
    • Learning Community
    • Code of Conduct
  • Team
  • Donate
  • About
    • Our Open Access Policy
    • Our Contributions Policy
    • Press
  • Contact
  • 🇫🇷
Subscribe

Green Lighting ML: Confidentiality, Integrity, and Availability of Machine Learning Systems in Deployment

July 19, 2020 by MAIEI

Get the paper in PDF formDownload

Authors: Abhishek Gupta, Erick Galinkin

Abstract

Security and ethics are both core to ensuring that a machine learning system can be trusted. In production machine learning, there is generally a hand-off from those who build a model to those who deploy a model. In this hand-off, the engineers responsible for model deployment are often not privy to the details of the model and thus, the potential vulnerabilities associated with its usage, exposure, or compromise.

Techniques such as model theft, model inversion, or model misuse may not be considered in model deployment, and so it is incumbent upon data scientists and machine learning engineers to understand these potential risks so they can communicate them to the engineers deploying and hosting their models. This is an open problem in the machine learning community and in order to help alleviate this issue, automated systems for validating privacy and security of models need to be developed, which will help to lower the burden of implementing these hand-offs and increasing the ubiquity of their adoption.

Get the paper in PDF formDownload

Category iconUncategorized

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We write every week.
  • LinkedIn
  • RSS
  • Twitter
  • © MONTREAL AI ETHICS INSTITUTE. All rights reserved 2021.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Creative Commons LicenseLearn more about our open access policy here.