• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Core Principles of Responsible AI
    • Accountability
    • Fairness
    • Privacy
    • Safety and Security
    • Sustainability
    • Transparency
  • Special Topics
    • AI in Industry
    • Ethical Implications
    • Human-Centered Design
    • Regulatory Landscape
    • Technical Methods
  • Living Dictionary
  • State of AI Ethics
  • AI Ethics Brief
  • 🇫🇷
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

Green Lighting ML: Confidentiality, Integrity, and Availability of Machine Learning Systems in Deployment

July 19, 2020

Get the paper in PDF formDownload

Authors: Abhishek Gupta, Erick Galinkin

Abstract

Security and ethics are both core to ensuring that a machine learning system can be trusted. In production machine learning, there is generally a hand-off from those who build a model to those who deploy a model. In this hand-off, the engineers responsible for model deployment are often not privy to the details of the model and thus, the potential vulnerabilities associated with its usage, exposure, or compromise.

Techniques such as model theft, model inversion, or model misuse may not be considered in model deployment, and so it is incumbent upon data scientists and machine learning engineers to understand these potential risks so they can communicate them to the engineers deploying and hosting their models. This is an open problem in the machine learning community and in order to help alleviate this issue, automated systems for validating privacy and security of models need to be developed, which will help to lower the burden of implementing these hand-offs and increasing the ubiquity of their adoption.

Get the paper in PDF formDownload
Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

related posts

  • Montreal AI Ethics Institute Hosts a TechAIDE CafĂ© Session

    Montreal AI Ethics Institute Hosts a TechAIDE Café Session

  • Response to Scotland's AI Strategy

    Response to Scotland's AI Strategy

  • Social Robots and Empathy: The Harmful Effects of Always Getting What We Want

    Social Robots and Empathy: The Harmful Effects of Always Getting What We Want

  • 10 takeaways from our meetup on AI Ethics in the APAC Region

    10 takeaways from our meetup on AI Ethics in the APAC Region

  • 5 Questions & Answers from StradigiAI's Twitter Roundtable

    5 Questions & Answers from StradigiAI's Twitter Roundtable

  • The Most Important Question in AI Alignment

    The Most Important Question in AI Alignment

  • Approaches to Deploying a Safe Artificial Moral Agent

    Approaches to Deploying a Safe Artificial Moral Agent

  • On the Construction of Artificial Moral Agents Agents

    On the Construction of Artificial Moral Agents Agents

  • The Abuse and Misogynoir Playbook, explained

    The Abuse and Misogynoir Playbook, explained

  • The Canada Protocol: AI checklist for Mental Health & Suicide Prevention

    The Canada Protocol: AI checklist for Mental Health & Suicide Prevention

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer

Categories


• Blog
• Research Summaries
• Columns
• Core Principles of Responsible AI
• Special Topics

Signature Content


• The State Of AI Ethics

• The Living Dictionary

• The AI Ethics Brief

Learn More


• About

• Open Access Policy

• Contributions Policy

• Editorial Stance on AI Tools

• Press

• Donate

• Contact

The AI Ethics Brief (bi-weekly newsletter)

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.


Archive

  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.