• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy

  • Articles
    • Public Policy
    • Privacy & Security
    • Human Rights
      • Ethics
      • JEDI (Justice, Equity, Diversity, Inclusion
    • Climate
    • Design
      • Emerging Technology
    • Application & Adoption
      • Health
      • Education
      • Government
        • Military
        • Public Works
      • Labour
    • Arts & Culture
      • Film & TV
      • Music
      • Pop Culture
      • Digital Art
  • Columns
    • AI Policy Corner
    • Recess
  • The AI Ethics Brief
  • AI Literacy
    • Research Summaries
    • AI Ethics Living Dictionary
    • Learning Community
  • The State of AI Ethics Report
    • Volume 6 (February 2022)
    • Volume 5 (July 2021)
    • Volume 4 (April 2021)
    • Volume 3 (Jan 2021)
    • Volume 2 (Oct 2020)
    • Volume 1 (June 2020)
  • About
    • Our Contributions Policy
    • Our Open Access Policy
    • Contact
    • Donate

People are not coins: Morally distinct types of predictions necessitate different fairness constraints

September 15, 2023

🔬 Research Summary by Corinna Hertweck, a fourth-year PhD student at the University of Zurich and the Zurich University of Applied Sciences where she is working on algorithmic fairness.

[Original paper by Eleonora Viganò, Corinna Hertweck, Christoph Heitz, Michele Loi]


Overview: Fairness has become an increasingly important concern in the design of automated decision-making systems. So-called fairness criteria can help us evaluate the fairness of such systems. The paper “On Statistical Criteria of Algorithmic Fairness” by Brian Hedden, however, argues that most of the statistical fairness criteria we use today do not necessarily have to be fulfilled to achieve fairness. Our paper questions the practical relevance of these findings for machine learning practitioners by showing that his argument does not apply to most machine learning systems used today.


Introduction

With the increasing use of automated decision-making systems in high-stakes domains, such as hiring, lending, and education, fairness has to be integrated into the design of these systems. So-called fairness criteria or fairness metrics are used to measure fairness in these systems. Brian Hedden’s paper “On Statistical Criteria of Algorithmic Fairness” provides good reasons to question whether some of the most widely used statistical fairness criteria really need to be fulfilled for a system to be fair, i.e., whether they are necessary conditions for fairness. Our paper shows that Hedden’s argument does not apply to most automated decision-making systems today. To show this, we reconstruct his argument and critically analyze it. We conclude that while the analyzed fairness criteria are indeed not necessary conditions for fairness for all automated decision-making systems, they are still relevant and might even be necessary for some of today’s most used decision-making systems.

Key Insights

According to Hedden, most statistical fairness criteria are not necessary for fairness

The field of algorithmic fairness has developed many fairness criteria. Hedden’s paper shows that most of these fairness criteria are not necessary conditions for fairness. For this, he uses an example in which people are given coins.  A person with a coin that lands “heads” is considered a “heads person.” The task is to predict whether a person is a “heads person.”  Hedden further assumes that every coin has a certain known probability of landing heads. For example, a coin with a probability of 0.7 lands heads in 70% of cases. Thus, The predictive algorithm looks at the coin’s probability of landing heads to make this prediction. If it is above 50%, it predicts the person to be a heads person. Hedden then constructs a case in which this perfectly fair prediction of being a heads person violates most fairness criteria he considers. From that, he follows that most fairness criteria are not necessary conditions for fairness.

Hedden’s result does not apply to most ML systems

While we do not contest the correctness of the author’s argument, we do contest its relevance for machine learning practitioners. To show this, we distinguish two kinds of predictions:

(1) Predictions based on data from many people and

(2) Predictions based on data from one person only.

Clearly, in machine learning, we always follow the first approach when we make predictions about people because data from one person is never enough to properly train a machine learning model. On the other hand, the second kind of prediction is easy to do with coins: We can toss a single coin a thousand times and get a good prediction of how likely it is to land heads in the next toss. This is almost impossible to do with people because people are not coins.

Notice, however, how Hedden’s argument relies on the second kind of prediction, on predictions that are based on data from only that one person. One only needs data from one person (or rather their coin) to make predictions about them. Data from other people is not aggregated or analyzed to make predictions. Because of that, we argue that his argument does not apply to most machine learning applications – and the question of whether the fairness criteria Hedden considered could be necessary conditions for these systems remains undetermined.

Is it morally permissible to make predictions about an individual based on similar individuals?

Now, with these two kinds of predictions in mind, you may argue that the first kind of prediction is always morally wrong because we should treat people as individuals – so talking about the necessity of fairness criteria for those kinds of predictions is pointless. We reply that treating people as individuals is a moral principle that can be overridden by other moral obligations or disregarded in some contexts (e.g., in fleeting interactions or in cases with limited individual information). Predictions about individuals based on data from other people may be morally appropriate if they, for example, prevent bigger harm. However, when this is the case and predictions about individuals are thus morally appropriate, they also have to be fair, and fairness criteria can help ensure this.

Conclusion: Statistical fairness criteria are still relevant for most ML systems

In conclusion, our paper shows that one should not disregard the fairness criteria listed by Hedden as “not necessary” just because they are not necessary conditions for all predictive models. Most machine learning applications are not vulnerable to Hedden’s argument because they base their predictions on data from many people. The fairness criteria considered by Hedden could thus still be necessary conditions for fairness in some cases.

Between the lines

This paper discusses the relevance – in particular, the necessity – of fulfilling existing statistical fairness criteria. We showed that Brian Hedden’s argument, which concludes that most criteria are unnecessary for fairness, does not apply to most automated decision-making systems today. On a broader note, however, we must acknowledge how context-dependent fairness is. What makes for a good fairness criterion in one context could be unfit for another context. When it comes to using fairness criteria in practice, what matters most is the question of how to find an appropriate criterion in one’s context. This is still an open question in the literature and of high relevance in practice as model developers and stakeholders are confronted with how to evaluate their specific system’s fairness.

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We publish bi-weekly.

Primary Sidebar

🔍 SEARCH

Spotlight

ALL IN Conference 2025: Four Key Takeaways from Montreal

Beyond Dependency: The Hidden Risk of Social Comparison in Chatbot Companionship

AI Policy Corner: Restriction vs. Regulation: Comparing State Approaches to AI Mental Health Legislation

Beyond Consultation: Building Inclusive AI Governance for Canada’s Democratic Future

AI Policy Corner: U.S. Executive Order on Advancing AI Education for American Youth

related posts

  • Cinderella’s shoe won’t fit Soundarya: An audit of facial processing tools on Indian faces

    Cinderella’s shoe won’t fit Soundarya: An audit of facial processing tools on Indian faces

  • Social media polarization reflects shifting political alliances in Pakistan

    Social media polarization reflects shifting political alliances in Pakistan

  • How to invest in Data and AI companies responsibly

    How to invest in Data and AI companies responsibly

  • Exploring Antitrust and Platform Power in Generative AI

    Exploring Antitrust and Platform Power in Generative AI

  • Incentivized Symbiosis: A Paradigm for Human-Agent Coevolution

    Incentivized Symbiosis: A Paradigm for Human-Agent Coevolution

  • Top 5 takeaways from our conversation with I2AI on AI in different national contexts

    Top 5 takeaways from our conversation with I2AI on AI in different national contexts

  • Putting AI ethics to work: are the tools fit for purpose?

    Putting AI ethics to work: are the tools fit for purpose?

  • The Sociology of Race and Digital Society

    The Sociology of Race and Digital Society

  • The Role of Relevance in Fair Ranking

    The Role of Relevance in Fair Ranking

  • Studying up Machine Learning Data: Why Talk About Bias When We Mean Power?

    Studying up Machine Learning Data: Why Talk About Bias When We Mean Power?

Partners

  •  
    U.S. Artificial Intelligence Safety Institute Consortium (AISIC) at NIST

  • Partnership on AI

  • The LF AI & Data Foundation

  • The AI Alliance

Footer


Articles

Columns

AI Literacy

The State of AI Ethics Report


 

About Us


Founded in 2018, the Montreal AI Ethics Institute (MAIEI) is an international non-profit organization equipping citizens concerned about artificial intelligence and its impact on society to take action.

Contact

Donate


  • © 2025 MONTREAL AI ETHICS INSTITUTE.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Learn more about our open access policy here.
  • Creative Commons License

    Save hours of work and stay on top of Responsible AI research and reporting with our bi-weekly email newsletter.