• Skip to primary navigation
  • Skip to main content
  • LinkedIn
  • RSS
  • Twitter
Montreal AI Ethics Institute

Montreal AI Ethics Institute

Democratizing AI ethics literacy.

  • Content
    • The State of AI Ethics
    • The AI Ethics Brief
    • The Living Dictionary
    • Research Summaries
    • Columns
      • Social Context in LLM Research: the BigScience Approach
      • Recess
      • Like Talking to a Person
      • Sociology of AI Ethics
      • The New Heartbeat of Healthcare
      • Office Hours
      • Permission to Be Uncertain
      • AI Application Spotlight
      • Ethical AI Startups
    • Publications
  • Community
    • Events
    • Learning Community
    • Code of Conduct
  • Team
  • Donate
  • About
    • Our Open Access Policy
    • Our Contributions Policy
    • Press
  • Contact
  • 🇫🇷
Subscribe

Corporate Governance of Artificial Intelligence in the Public Interest

August 10, 2021 by MAIEI

🔬 Research summary by Jonas Schuett, Policy Research Intern at DeepMind | Research Fellow at the Legal Priorities Project | PhD Candidate in Law at Goethe University Frankfurt

[Original paper by Peter Cihon, Jonas Schuett, Seth D. Baum]


Overview:

How can different actors improve the corporate governance of AI in the public interest? This paper offers a broad introduction to the topic. It surveys opportunities of nine types of actors inside and outside the corporation. In many cases, the best results will accrue when multiple types of actors work together.


Introduction

Private industry is at the forefront of AI research and development. AI is a major focus of the technology industry, which includes some of the largest corporations in the world. As AI research and development has an increasingly outsized impact on the world, it is essential to ensure that the governance of the field’s leading companies supports the public interest.

Key Insights

Opportunities to improve the corporate governance of AI

The opportunities to improve AI corporate governance are diverse. The paper surveys opportunities for nine different types of actors:

  • Management can establish policies, translate policies into practice, and create structures such as oversight committees.
  • Workers can directly affect the design and use of AI systems, and can have indirect effects by influencing management.
  • Investors can voice concerns to management, vote in shareholder resolutions, replace a corporation’s board of directors, sell off their investments to signal disapproval, and file lawsuits against the corporation.
  • Corporate partners can use their business-to-business market power and relations to influence companies, while corporate competitors can push each other in pursuit of market share and reputation.
  • Industry consortia can identify and promote best practices, formalize best practices as standards, and pool resources to advance industry interests, such as by lobbying governments.
  • Nonprofit organizations can conduct research, advocate for change, organize coalitions, and raise awareness.
  • The public can select which corporate AI products and services to use, and also support specific AI public policies.
  • The media can research, document, analyze, and generate attention to corporate governance activities and related matters.

Coordination and collaboration

In many cases, the best results will accrue when multiple types of actors work together. The paper shows this via extended discussion of three running examples:

  • First, workers and the media collaborated to influence managers at Google to leave Project Maven, a drone video classification project of the US Department of Defense. Workers initially leaked information about Maven to the media, and then signed an open letter against Maven following media reports.
  • Second, nonprofit research and advocacy on law enforcement use of facial recognition technology fueled worker and investor activism and public pressure (especially the 2020 protests against racism and police brutality) that ultimately pushed multiple competing AI corporations to change their practices.
  • Third, workers, management, and industry consortia have interacted to develop and promote best practices concerning the publication of potentially harmful research.

Between the lines

The paper will be of use to researchers looking for an overview of corporate governance at leading AI companies, levers of influence in corporate AI development, and opportunities to improve corporate governance with an eye towards long-term AI development.

Category iconResearch Summaries

Want quick summaries of the latest research & reporting in AI ethics delivered to your inbox? Subscribe to the AI Ethics Brief. We write every week.
  • LinkedIn
  • RSS
  • Twitter
  • © MONTREAL AI ETHICS INSTITUTE. All rights reserved 2021.
  • This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Creative Commons LicenseLearn more about our open access policy here.