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Long form summary:  
 

A bemusing weakness of many supervised machine learning (ML) models, including 
neural networks (NNs), are adversarial examples (AEs).  AEs are inputs generated by adding a 
small perturbation to a correctly-classified input, causing the model to misclassify the resulting 
AE with high confidence.  The existence of AEs highlights two general weaknesses of ML 
models, namely that they learn potentially misleading correlations, instead of the underlying 
features which define a class; and that they make over-confident predictions in regions where 
data is sparse. 
 
Adversarial examples and linearity 

Goodfellow et al. propose a linear explanation of AEs, in which the vulnerability of ML 
models to AEs is considered a by-product of their linear behaviour, combined with a 
high-dimensional feature space.  In other words, small perturbations on an input can alter its 
classification because the change in activation (as result of the perturbation) scales with the size 
of the input vector.  Thus the linearities which allow for efficient training are also a curse, 
because they make ML models susceptible to adversarial attacks. 
 
Making an adversarial example 

To advance their hypothesis, the authors introduce a method of efficiently generating 
AEs known as the “fast gradient sign method” (FGS).  Given a cost function , where (θ, , )J x y θ  
represents the current set of model parameters,  the input, and  the targets, we add ax y  
perturbation to  which is equal to the sign of the cost function gradient (with respect to )x x  
times a constant . AEs produced in this way badly fool a maxout network.  When ,ε .25ε = 0  
89.4% of AEs  generated from the MNIST test set were misclassified, with an average 
confidence of 97.6%.  The figure below shows an amusing example of a misclassified AE 
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generated by FGS, this time by GoogLeNet on an ImageNet input. 

  
“Panda” + “nematode” = “gibbon”?  Unlikely.  The difference between the perturbed and 

unperturbed input is hardly even perceptible to the human eye.  
 

Adversarial training to the rescue 
As we saw above, identifying ways to effectively handle AEs is relevant to problems like 

image classification, where the input consists of intensity data for many thousands of pixels.  To 
patch this blindspot we must train our models to recognize adversarials.  One solution, explored 
by Szegedy et al. in 2014, is to mix AEs into the training set.  While this does regularize the 
NN’s response to AEs, it does not necessarily provide an advantage over dropout.  Instead the 
paper suggests adding a term to the cost function itself, which effectively penalizes the(θ, , )J x y  
model if the cost for an FGS-generated AE is significantly different from that of the unperturbed 
input.  Applying this form of adversarial training to a maxout network, the error rate on the 
MNIST adversarial test set drops dramatically from 89.4% to 17.9% ( ).  The network.25ε = 0  
goes from misclassifying almost every AE to misclassifying less than 1 in 5.  

One may ask whether adding random noise of a similar size as the FGS perturbation to 
training inputs would produce the same mitigating effect.  The answer appears to be no.  In the 
MNIST case, whether the authors randomly added  to each pixel, or drew from a uniform± ε  
distribution with range , the error rate and average confidence was similar to the results− , )( ε ε  
obtained without adversarial training.  

Curiously, suppressing a network’s sensitivity to adversarial perturbations may improve 
its interpretability.  The authors demonstrated that maxout network weights trained on MNIST 
became more localized after adversarial training, and patterns corresponding to features of a 
handwritten digit were more discernible (See right panel of figure below).  



 
Weight visualizations of maxout networks trained on MNIST.  Each row shows the filters 

for a single maxout unit.  Left) Naively trained model.  Right) Model with adversarial training. 
For a guide to understanding these visuals, visit: 
https://ml4a.github.io/ml4a/looking_inside_neural_nets/ 

 
A unifying interpretation 

Goodfellow et al.’s linear interpretation of AEs holds significant explanatory power.  It 
provides a theoretical understanding of why simple models with nonlinear activation, such as 
shallow radial basis functions (RBF) networks are more robust to AEs than NNs.  It also 
demystifies the observation that different linear models respond similarly to a given AE, even 
assigning the same incorrect class, despite being trained on different datasets.  Through the 
linear view of adversarial training we also gain insight on general problems like interpretability 
and response to outliers, which suggests that understanding the existence of AEs is crucial for 
understanding ML models more broadly. 
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